Comparative effects of insulin on the activation of the Raf/Mos-dependent MAP kinase cascade in vitellogenic versus postvitellogenic Xenopus oocytes.
نویسندگان
چکیده
Xenopus postvitellogenic oocytes resume meiosis in vitro upon exposure to insulin or insulin-like growth factor 1 (IGF-1) via a ras-dependent pathway, whereas stage IV (600 micron < diameter < 1000 micron) oocytes cannot. The aim of the present study was to determine which event(s) of the transduction pathway from IGF-1 receptor to maturation-promoting factor (MPF) activation is deficient in the small, vitellogenic, oocytes to explain their inability to undergo germinal vesicle breakdown (GVB) after insulin treatment. We thus analyzed the effect of insulin on the Ras/Raf-dependent mitogen-activated protein kinase cascade because of its crucial role prior to MPF activation. The effect of insulin on pp39mos synthesis in stage IV oocytes was also studied since this protein kinase participates in the mitogen-activated protein kinase (MAPK) pathway as a MAPKK kinase like Raf. Contrary to what is observed in postvitellogenic oocytes, MAPK was not activated in insulin-treated stage IV oocytes even 20 hr after the stimulation. This was not caused by the absence of MAPK activators like MEK (MAPKK), Raf, or Ras, but rather by the inability of insulin to activate Ras. Interestingly, injection of constitutively active raf mRNA as well as oncogenic Ras protein, Ha-Ras lys12, in stage IV oocytes resulted in MAPK activation, whereas neither Mos accumulation nor GVB occurred, suggesting that the Ras --> Raf --> MAPKK --> MAPK cascade was functional but that MAPK activation alone was not sufficient for the mitogenic signal to proceed further down in the pathway leading to MPF activation. Treatment of stage IV oocytes with insulin did not stimulate Mos synthesis either, indicating a dysfunction in the "Mos synthesis machinery." The present results show that incompetence of Xenopus stage IV oocytes to activate MPF in response to insulin is primarily due to the inability of the peptide to activate Ras and to stimulate pp39mos synthesis and secondarily to a deficiency in the mitogenic pathway that connects MAPK to MPF activation.
منابع مشابه
Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse.
Mos is normally expressed during oocyte meiotic maturation in vertebrates. However, apart from its cytostatic factor (CSF) activity, its precise role during mouse meiosis is still unknown. First, we analyzed its role as a MAP kinase kinase kinase. Mos is synthesized concomitantly with the activation of MAP kinase in mouse oocytes. Moreover, MAP kinase is not activated during meiosis in oocytes ...
متن کاملRequirement for Raf and MAP kinase function during the meiotic maturation of Xenopus oocytes
The role of Raf and MAPK (mitogen-activated protein kinase) during the maturation of Xenopus oocytes was investigated. Treatment of oocytes with progesterone resulted in a shift in the electrophoretic mobility of Raf at the onset of germinal vesicle breakdown (GVBD), which was coincident with the activation of MAPK. Expression of a kinase-defective mutant of the human Raf-1 protein (KD-RAF) inh...
متن کاملHsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes.
During Xenopus oocyte maturation, the Mos protein kinase is synthesized and activates the MAP kinase cascade. In this report, we demonstrate that the synthesis and activation of Mos are two separable processes. We find that Hsp90 function is required for activation and phosphorylation of Mos and full activation of the MAP kinase cascade. Once Mos is activated, Hsp90 function is no longer requir...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملA new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK.
The resumption of meiosis in Xenopus arrested oocytes is triggered by progesterone, which leads to polyadenylation and translation of Mos mRNA, then activation of MAPK pathway. While Mos protein kinase has been reported to be essential for re-entry into meiosis in Xenopus, arrested oocytes can undergo germinal vesicle breakdown (GVBD) independently of MAPK activation, leading us to question wha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 188 1 شماره
صفحات -
تاریخ انتشار 1997